Searching for the Nanohertz Gravitational-wave background


Author: Bielefeld University

The European Pulsar Timing Array collaboration reports on the outcome of a 24 year observing campaign with five large-aperture radio telescopes in Europe, resulting in a candidate signal for the since-long sought gravitational wave background due to in-spiraling supermassive black-hole binaries. The collaboration brings together teams of astronomers around the largest European radio telescopes, as well as groups specialized in data analysis and modelling of gravitational wave signals. Among them are astrophysicists from the research group of Professor Dr. Joris Verbiest from the Faculty of Physics at Bielefeld University. Although a detection cannot be claimed yet, this represents a significant step in the effort to finally unveil gravitational waves at very low frequencies in the Nanohertz regime. The results are presented online as refereed publication in the “Monthly Notices of the Royal Astronomical Society”.

The European Pulsar Timing Array is a scientific collaboration bringing together teams of astronomers around the largest European radio telescopes, as well as groups specialized in data analysis and modelling of gravitational wave signals. It has published a detailed analysis of a candidate signal for the since-long sought gravitational wave background due to in-spiraling supermassive black-hole binaries. Although a detection cannot be claimed yet, this represents another significant step in the effort to finally unveil gravitational waves at very low frequencies, of order one billionth of a Hertz. In fact, the candidate signal has emerged from an unprecedented detailed analysis and using two independent methodologies. Moreover, the signal shares strong similarities with those found from the analyses of other teams.

Artistic impression of the European Pulsar Timing Array experiment
Artistic impression of the European Pulsar Timing Array experiment. A coordinated network of European radio telescopes observed an array of pulsars distributed across the sky. The measured variation in the arrival time of the emitted pulses on Earth allows astronomers to study tiny variations in spacetime. These variations, called gravitational waves’, still propagate the Universe from a distant past, when galaxies merged and the supermassive black holes in their centre orbited each other with a period of a few years to produce them.

The results were made possible thanks to the data collected over 24 years with five large-aperture radio telescopes in Europe (see Fig. 2). They include the 100-m Radio Telescope of the Max Planck Institute for Radio Astronomy near Effelsberg in Germany, the 76-m Lovell Telescope in Cheshire/United Kingdom, the 94-m Nançay Decimetric Radio Telescope in France, the 64-m Sardinia Radio Telescope at Pranu Sanguni, Italy and the 16 antennas of the Westerbork Synthesis Radio Telescope in the Netherlands. In the observing mode of the Large European Array for Pulsars, the telescopes of the European Pulsar Timing Array are tied together to synthesize a fully steerable 200-m dish to greatly enhance the sensitivity of the array towards gravitational waves.

Radiation beams from the pulsars’ magnetic poles circle around their rotational axes, and are observed as pulses when they pass our line of sight, like the light of a distant lighthouse. Pulsar timing arrays are networks of very stably rotating pulsars, used as galactic-scale gravitational wave detectors. In particular, they are sensitive to very low frequency gravitational waves in the billionth-of-a-Hertz regime. This will extend the gravitational wave observing window from the high frequencies (hundreds of Hertz) currently observed by the ground-based detectors LIGO/Virgo/KAGRA. While those detectors probe short lasting collisions of stellar-mass black holes and neutron stars, Pulsar Timing Arrays can probe gravitational waves such as those emitted by systems of slowly in-spiraling supermassive black-hole binaries hosted at the centres of galaxies. The addition of the gravitational waves released from a cosmic population of these binaries forms a gravitational wave background.

“We can measure small fluctuations in the arrival times of the pulsars’ radio signal at Earth, caused by the spacetime deformation due to a passing-by very low frequency gravitational wave. In practice, these deformations manifest as sources of a very low frequency noise in the series of the observed times of arrival of the pulses, a noise which is shared by all the pulsars of a Pulsar Timing Array”, explains Dr. Jun Wang, who recently completed his PhD on this topic at Bielefeld University.

However, the amplitude of this noise is incredibly tiny (estimated to be tens to a couple of hundreds of a billionth of a second) and in principle many other effects could impart that to any given pulsar in the Pulsar Timing Array.

To validate the results, multiple independent codes with different statistical frameworks were then used to mitigate alternate sources of noise and search for the gravitational wave background. Importantly, two independent end-to-end procedures were used in the analysis for cross-consistency.

The European Pulsar timing Array analysis with both procedures found a clear candidate signal for a gravitational wave background. Dr. Nicolas Caballero, researcher at the Kavli Institute for Astronomy and Astrophysics in Beijing and co-lead author explains: “The European Pulsar Timing Array first found indications for this signal in their previously published data set in 2015, but as the results had larger statistical uncertainties, they were only strictly discussed as upper limits. Our new data now clearly confirm the presence of this signal, making it a candidate for a gravitational wave background “.

Radio telescopes of the EPTA network.
Radio telescopes of the EPTA network. Clockwise from upper left: Effelsberg 100-m Radio Telescope (Germany), Nançay Radio Telescope (France), Jodrell Bank Telescope (UK), Westerbork Synthesis Radio Telescope (WSRT, The Netherlands), Sardinia Radio Telescope (SRT, Italy). Credit: Norbert Tacken/MPIfR (Effelsberg), Letourneur and Nançay Observatory (Nançay), Anthony Holloway (Jodrell Bank), ASTRON (WSRT), Gianni Alvito/INAF (SRT).

Einstein’s General Relativity predicts a very specific relation among the spacetime deformations experienced by the radio signals coming from pulsars located in different directions in the sky. Scientists call that as the spatial correlation of the signal, or Hellings and Downs curve. Its detection will uniquely identify the observed noise as due to a gravitational wave background. Dr. Siyuan Chen, researcher at the Laboratoire de Physique et de Chimie de l’Environnement et de l’Espace in Orleans, co-lead author of the study, notes: “At the moment, the statistical uncertainties in our measurements do not allow us yet to identify the presence of spatial correlation expected for the gravitational-wave background signal. For further confirmation we need to include more pulsar data into the analysis, however the current results are very encouraging.”

The European Pulsar Timing Array is a founding member of the International Pulsar Timing Array. As analyses of independent data performed by the other partners in the International Pulsar Timing Array (i.e. the NANOGrav and the PPTA experiments) also indicated similar common signals, it has become vital to apply multiple analysis algorithms to increase confidence in a possible future detection of the gravitational wave background. The members of the International Pulsar timing Array are working together, drawing conclusions from comparing their data and analyses to better prepare for the next steps.

Prof. Dr. Joris Verbiest, group leader at Bielefeld University and one of the leading members of the European Pulsar Timing Array Consortium, summarizes: “It is really satisfying to finally see the first hint of a signal. This confirms the expectation that we will soon be able to open up a new part of the gravitational-wave spectrum and use it to study the formation and evolution of galaxies throughout cosmic time in detail.”

The authors of the paper are S. Chen, R. N. Caballero, Y. J. Guo, A. Chalumeau, K. Liu, G. Shaifullah, K. J. Lee, S. Babak, G. Desvignes, A. Parthasarathy, H. Hu, E. van der Wateren, J. Antoniadis, A.-S. Bak Nielsen, C. G. Bassa, A. Berthereau, M. Burgay, D. J. Champion, I. Cognard, M. Falxa, R. D. Ferdman, P. C. C. Freire, J. R. Gair, E. Graikou, L. Guillemot, J. Jang, G. H. Janssen, R. Karuppusamy, M. J.Keith, M. Kramer, X. J. Liu, A. G. Lyne, R. A. Main, J. W. McKee, M. B. Mickaliger, B. B. P. Perera, D. Perrodin, A. Petiteau, N. K. Porayko, A. Possenti, A. Samajdar, S. A. Sanidas, A. Sesana, L. Speri, B.W. Stappers, G. Theureau, C. Tiburzi, A. Vecchio, J. P. W. Verbiest, J. Wang, L. Wang and H. Xu.
Authors with affiliated with Bielefeld University include Ann-Sofie Bak Nielsen, Joris Verbiest and Jun Wang.

Original Paper
S. Chen et al: Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: Inferences in the stochastic gravitational-wave background search, 2021, Monthly Notices of the Royal Astronomical Society (https://doi.org/10.1093/mnras/stab2833 or
https://academic.oup.com/mnras/article/508/4/4970/6410749).

Further Information:
European Pulsar Timing Array (EPTA)
http://www.epta.eu.org/

International Pulsar Timing Array (IPTA)
http://www.ipta4gw.org/